Earnout deals: Method of initial payment and acquirers' gains*

Leonidas Barbopoulos

School of Economics and Finance, University of St Andrews, St Andrews, KY16 9AL, UK

Email: leonidas.barbopoulos@st-andrews.ac.uk

Tel: +44(0)133 446 1955

Krishna Paudyal

Strathclyde Business School University of Strathclyde, Glasgow, G4 0QU, UK

Email: krishna.paudyal@strath.ac.uk
Tel: +44(0)1415482894

Sudi Sudarsanam

Cranfield School of Management, Cranfield, MK43 0AL, UK

Email: p.s.sudarsanam@cranfield.ac.uk

_

^{*} We acknowledge the comments and suggestions of John Doukas, Jana Fidrmuc, Jens Hagendorff, and the participants of the Southwestern Finance Association conference (Albuquerque, 2013 where an earlier version of the paper was awarded 'Best paper in Corporate Finance') and the participants in the seminar series of the University of St Andrews, University of Glasgow, Old Dominion University, Luxemburg School of Finance, King's College London, College of William and Mary, University of Vienna, Vienna Graduate School of Finance, and University of St. Gallen in earlier versions of the paper. Any remaining errors are ours. Please address all correspondence to Krishna Paudyal (Krishna.paudyal@strath.ac.uk).

Earnout deals: Method of initial payment and acquirers' gains

Abstract

We analyze the implications of initial payment methods in earnout deals on acquirers' gains. The

results, which are robust to self-selection bias and alternative model specifications, reveal that

earnout deals that are combined with initial payment in 'stocks' or in 'cash & stocks' outperform

non-earnout deals. Such positive wealth effect of the choice of initial payment method in earnout

deals is more prominent in cross-border deals than in domestic deals. Overall, the earnout

contract delivers its designated risk-mitigating advantages when the initial payment method also

helps spread the risk between the shareholders of acquiring and target firms.

Keywords: Earnout contracts; Initial payment in earnout deals; Asymmetric information;

Acquirers' gains.

GEL classification: G34.

2

Earnout deals: Method of initial payment and acquirers' gains

1. Introduction

In a seminal study of the effect of earnout deals on acquirers' gains Kohers and Ang (2000) show that such deals yield higher returns to acquirers than single up-front financed deals.

In an earnout deal, the payment to target owners is made in two stages. The first stage payment (an initial payment at the time of the deal) can be in the form of cash, stock or a combination of these and other securities.

The second stage payment is made over the earnout period and is conditional on the target reaching agreed milestones.

Earnout contracts are becoming popular in recent years reaching 11% of total deals in 2009 from less than two percent in 1986. In spite of such growing popularity of earnout contracts in which a large proportion of the deal value (about two-thirds) is paid at the time of the deal the effect of the choice of initial payment method on acquirers' abnormal returns remains to be investigated. This paper aims to fill this void. The findings of this analysis should be of interest to the managers and shareholders of firms that are willing to engage in mergers and acquisitions (M&A) and minimize the adverse effects of information asymmetry through risk sharing.

The choice of payment method in M&A deals is often guided by the aim of mitigating the valuation risk which originates from information asymmetry between the merging firms for two reasons. First, one or both merging firms may hold private knowledge on their valuation which is

¹ Studies by Cain et al. (2011) for the US and Barbopoulos and Sudarsanam (2012) for the UK also show that among the domestic deals earnout deals yield higher returns to acquirers than single up-front payment deals.

² The average earnout component is about 33% of the total purchase consideration (Cain et al., 2011; Barbopoulos and Sudarsanam, 2012).

³ Faccio and Masulis (2005, footnote 13) show that the balance is usually paid in cash.

not *ex ante* transparent to the other – a case of adverse selection or hidden knowledge. Second, one or both merging firms can take an action *ex post* that may harm the other – a case of moral hazard⁴ or hidden action. Studies show that adverse selection risk can be reduced by the judicious choice of the method of payment (Hansen, 1987; Eckbo et al., 1990). Neither cash nor stock payment that is delivered in a single up-front payment can factor the post-acquisition performance of the target in the deal value while an earnout contract does. The contingent form of consideration (earnout) seeks to achieve both the avoidance of the adverse selection problem (i.e. *ex ante* overvaluation of the target firm due to target owners/managers hiding 'bad' information regarding the 'intrinsic' value of the firm) and the *ex post* moral hazard problem (i.e. contract failure due to shirking or the inability of a party to enforce contract compliance and performance delivery), thus contributing to the reduction in valuation risk for the acquiring firm.⁵

The attractiveness of earnout as a payment mechanism for mitigating the adverse selection and moral hazard problems has contributed to its increasing use in recent years (see

_

⁴ Moral hazard arises when contractual performance cannot be precisely monitored or enforced due to weak contract formulation, imprecise performance measurement, or weak contract enforcement remedies. For a discussion of the adverse selection and moral hazard perspectives on earnouts see Cain et al. (2011).

Several other contractual mechanisms are available for enhancing M&A deal success, such as: (a) termination fees, lockups, and material adverse change clauses that are designed to prevent, or raise the cost of, either the acquirer or the target reneging on the deal, (b) collars that are designed to minimize the impact of short term adverse stock price movements and, (c) toeholds that are designed to increase the probability of deal success by the acquirer through buying up chunks of target shares. Unlike earnout contracts that are designed to manage valuation risk, these mechanisms are designed to eliminate transactional risk and not mitigate valuation risk. Hence, our primary objective in this paper is to analyze the impact of the combinations of payment methods in earnout deals in mitigating valuation risk in the context of domestic and foreign acquisitions.

Figure 1). The choice of initial payment method, however, is a matter of high strategic importance in managing the valuation risk. For instance, a combination of stock (initial payment) and earnout may add more value to the acquirer as it provides a better risk sharing mechanism between the shareholders of the target and acquiring firms. On the other hand, acquirers who are confident about the value of the merger may prefer to pay the up-front tranche of payment in cash such that they could limit the transfer of wealth gain from M&A to target owners. Thus, in assessing the impact of earnout as a risk management tool, the interactive effect of the initial payment method and earnout is critical and neither should be evaluated in isolation. The strategic decision of combining earnout with a particular method of initial payment is expected to influence the gains to acquirers. The implications of such a decision on acquirers' gains, however, remain to be investigated. We fill this void by analyzing the impact of the choice of initial payment in earnout deals on acquirers' gains.

(Insert Figure 1 about here)

The paper makes two distinct contributions to the literature. It is the first study to investigate the wealth effect of the initial payment method in earnout deals. It is also the first study to analyze the relative merits of combinations of payment methods in earnout contracts against other methods of payment in both domestic and foreign acquisitions. The results show that significantly higher gains can be generated in earnout deals when the initial payment is made in stocks, or in a combination of cash & stocks. Such a combination, where risk sharing is maximized, is more value enhancing in CBA than in domestic deals, indicating that earnout contract with superior risk sharing mechanism is a more effective in CBA than in domestic deals. On the methods front, to ensure that the findings based on conventional methods are robust to

potential self-selection biases with regards to endogeneity we apply propensity score matching (PSM) and Rosenbaum-bounds sensitivity methods.

2. Deferred financing, adverse selection and moral hazard

Both acquirers and targets face adverse selection risk in negotiating the value of a takeover deal. One way of mitigating this risk is to use the earnout in which the purchase consideration is divided into two parts – an initial payment at the time of the deal, and another tranche of payment which is contingent upon the target's post deal performance and ability to meet the predetermined goals under their own management.⁶ Earnout is often used to acquire targets whose value generally depends on the intangible assets of human creativity, efforts, and the flair of one or only a few individuals. Such firms often operate in the service or technology sectors and are privately owned. Valuing such companies, however, is immensely difficult and retaining the target management after acquisition may be a key consideration for acquirers. Earnout agreements provide a solution in such conditions. Cain et al. (2011) argue that earnout provides a solution when price negotiation between buyer and seller stalls. It provides incentives to target owner/managers by offering a direct link between agreed post-merger performance and

⁶ Cain et al. (2011, p. 155) note that 'the contingent payment is almost always based on the post-acquisition performance of the target. In 90% of the cases (un-tabulated), the earnout is contingent on the performance of the target firm only, while in another 9% of the cases, it is contingent on the combined performance of the target and acquiring firms'. They also find that stock price is used as a performance measure in only 1.2% cases (most targets in their sample are private firms). Accounting measures of profitability (e.g. cash flow, pre-tax income, gross profit, net income, earnings per share) are used in 52% of cases while in 32% of cases a measure of sales is used; and non-financial measures (such as product development, securing specific contracts) are used in 12.2% of cases.

the deal value. For the acquirer, it presents a solution to the moral hazard problem that the true potential of the target may not be achieved because of shirking or dereliction by target managerowner(s).

Cash only deals are not effective in managing the risk of adverse selection and moral hazard since they lack the contingency element directly related to the post-acquisition performance of the target. An all-stocks deal could be superior to a cash only deal as the target shareholders retain their interest in the combined firm and the risk is shared among the post-merger shareholders. An earnout contract, on the other hand, provides a more finely calibrated incentive mechanism as payment of the earnout component of the deal value is directly related to well-defined operating performance goals of the target. Similarly, the target owner-manager also gains from earnout as it allows *ex post* settlement that mitigates the effect of information asymmetry. Thus, earnout deals mitigate the information asymmetry effects on both acquirer and target shareholders.⁷

Since earnout provides a solution to adverse selection and moral hazard problems, it is likely to be of strategic relevance to acquirers in both CBA and domestic deals, compared to other methods of payments (e.g. cash only or stocks only, or their combination). In earnout deals one of the most important strategic decisions that merging partners need to make is the choice of

_

⁷ It may be argued that instead of having an earnout contract the purchase consideration can be discounted to reflect the uncertainties associated with the value of the deal. Whilst the discounted deal value could be acceptable for the acquirer it may not be acceptable to the target owners as they may have better insight about the value of the target. Such a scenario may lead to a break-down in negotiation. Earnout can alleviate the difficulty created by information asymmetry between the two merging partners and make a deal feasible as the ultimate value of the purchase consideration depends on the actual value added to the acquirer.

initial payment method. As a large proportion of deal value is settled up front, paying initially in cash is likely to expose the acquiring firm to higher adverse selection risks while exchange of stocks allows for higher risk sharing among the shareholders merging firms. As noted earlier, the primary objective of an earnout contract is to minimize the post-merger valuation risk to both parties. Since initial payment in stocks supplements the role of earnout, a combination of stocks and earnout is likely to mitigate the adverse selection and moral hazard risks more effectively, especially for acquirers. This leads to our first hypothesis that 'Acquirers that settle their purchase consideration with a combination of stocks and earnout gain more than the acquirers that combine cash with earnout'.

Reuer et al. (2004) suggest that the likelihood of the use of earnout increases with uncertainty facing the acquiring firm. Adverse selection and moral hazard problems may be aggravated in CBA due to the unfamiliarity of the acquirer with the target firm's market environment, legal and regulatory impediments, lack of comparable accounting information about the target firm, differences in national and organizational cultures, lack of (or unfamiliarity with) infrastructure to carry out extensive due diligence, etc. While retaining local owner-managers in the target firm may perhaps be more critical for the success of a foreign acquisition than in the case of a domestic acquisition, difficulties in monitoring their performance and ensuring that they deliver performance consistent with the value objectives of the acquirer may give rise to moral hazard.

The above discussion shows that the rationale for the use of earnout may be more compelling in CBA than in domestic deals. However, there is no study that examines the comparative effects of initial payment method in earnout contracts on the gains of acquirers of domestic and foreign targets. Since the use of earnout can mitigate the more serious adverse

selection and moral hazard risks associated with CBA, the impact of earnout on acquirers' gains may differ significantly between domestic and foreign deals, especially when the payment mechanism maximizes risk sharing opportunities. This leads to our second hypothesis that: 'When the initial payment is made in stocks in earnout deals, acquirers gain more from the acquisitions of foreign targets than from the acquisitions of domestic targets.'

We examine both hypotheses under univariate and multivariate frameworks using the sample and methodology described in the next section.

3. The Sample and Methodology

3.1 The sample

The sample is comprised of takeover deals announced by US firms between 01/01/1986 and 31/12/2013. SDC Platinum records 283,220 such deals during the sample period. For a deal to remain in the sample, it must meet the following criteria. First, the acquirer is a US company listed on one of the major US Stock Exchanges (Nasdaq, New York, American, NYSE, Alternext, Pacific, and Boston) and has a market value of at least \$1m, measured four weeks prior to the announcement of the bid. Second, to avoid the effects of very small deals, the deal value (excluding fees and expenses) needs to be at least \$1m. Third, to ensure that the acquirer enjoys control of the target, only acquisitions of at least 50% of target equity are included. Fourth, targets of varying listing status (listed, private and subsidiary) and domicile (US or non-US) are retained. Fifth, to avoid the confounding effects of multiple bids, bids announced within 5-days before or after another bid by the same acquirer are excluded. Finally, the daily stock price, the market value, and the market-to-book value of the acquirer need to be available from Datastream. 30,553 deals satisfy the criteria and remain in the sample.

Table 1 shows that the earnout activity spikes with the overall M&A activity. On average about 6.0% of US deals (5.7% of domestic and 10.4% of CBA) involve earnout contracts and the rest 94.0% involve single up-front payments.⁸ The use of earnout has become more popular in recent years reaching 11% of total deals in 2009 from less than 1.9% in 1986.

Table 2 (Panel A) shows that the single largest group of M&A deals involves public targets (51%), followed by private (32%) and subsidiary targets (17%). The earnout financed deals involve approximately 75% private and 23% subsidiary target firms. The statistics show that larger deals are settled in cash & stocks combined together (\$559m), followed by stocks only (\$406m) and by cash only payments (\$282m). Among the earnout deals, deals with an initial cash payment are the largest (\$120m) followed by a combination of multiple securities other than cash & stocks (hereafter 'other') (\$99m), by stocks (\$80m) and by cash & stock (\$75m). Acquirers using earnout are, on average, smaller across all portfolios classified by the methods of payment. Table 2 (Panel B) shows that among the earnout deals cash appears to be the most common form of initial payment (46%), followed by other (23%), cash & stocks (19%) and stocks (12%). Among the non-earnout deals, cash only remains the dominant method of payment (65%) followed by Cash & stocks (18%), stocks only (16%). Acquirers using earnout have lower growth opportunities (with a market-to-book value ratio of 1.9) than non-earnout acquirers (3.4).

_

⁸ Our sample compares favorably with those of previous studies. For example, Cain et al. (2011) report that 3.9% of their sample includes earnout bids. Datar et al. (2001) report that 4.1% of their total sample involves earnout bids while Kohers and Ang (2000) report that 5.6% of their sample uses earnout.

⁹ Kohers and Ang (2000) report that almost 66% (27%) of earnout deals in the US involve privately held (divested subsidiary) targets.

(Insert Tables 1 and 2 about here)

Panel B further reveals that acquirers of foreign targets are more mature than the acquirers of domestic targets (14.3 years vs. 12.7 years) and acquirers using earnout are younger than those using non-earnout (11.4 years vs. 13.0 years). Among the earnout deals, acquirers are more mature (14.1 years) in deals that have cash initial payment while the younger ones (8.0 years) prefer stocks at the initial payment stage. Similar patterns in acquirer age are observed in single-up-front payment deals; more mature acquirers (15.0 years) pay in cash while the younger acquirers (7.9 years) pay in stocks. The average value of earnout consideration is \$29m. Finally, consistent with earlier evidence (Cain et al., 2011) the average earnout to total deal value ratio (relative earnout size) is about a third (34%) of the total purchase consideration. For earnout deals in which the first payment is in stocks, the relative earnout size is 40% while it is only 32% (30%) in deals that have a cash (cash & stocks) initial payment. Such double contingent payments (stocks and earnout combined) are perhaps used in high risk deals to manage the valuation risk more effectively.

3.2 Measurement of abnormal returns

As in recent studies with similar sample features¹⁰ (e.g. Fuller et al., 2002), the announcement period abnormal returns are estimated using the market-adjusted model (equation 1):

¹⁰ The sample includes multiple target acquirers, making it impractical to have an estimation period that is free from the event under scrutiny. This makes the use of time series based asset pricing models inappropriate. Moreover, Brown and Warner (1980) show that the adjustment for the firm's systematic risk (beta) does not improve the

$$AR_{it} = R_{it} - R_{int} \tag{1}$$

where $AR_{i,t}$ is the abnormal return of acquirer i on day t; $R_{i,t}$ is the return of acquirer i on day t, $R_{m,t}$ is the value-weighted market return on day t. The announcement period cumulative excess return is the sum of the abnormal returns over the 5-days (t-2 to t+2) surrounding the day of announcement of the acquisition, day 0 (i.e. t = 0), as shown in equation (2):

$$CAR_{i} = \mathop{\bigcirc}_{t-2}^{t+2} AR_{i,t}$$
 (2)

3.3 Univariate analysis

The announcement period abnormal returns of acquirers are analyzed by the methods of payment, i.e. the use of earnout *vs.* non-earnout, and by initial payment methods in earnout deals. We also analyze the cases of domestic deals *vs.* CBA deals by the methods of payment, including the cases of initial method of payment in earnout deals. We use an appropriate *t-test* to assess the statistical significance of average gains and to compare the gains of acquirers that use different methods of payment.

3.4 Determinants of acquirers' gains: a cross-sectional analysis

Prior studies (referenced below) show that a number of factors relating to deal features, country features, as well as the characteristics of acquirer and target influence the acquirer's gains. To assess the effect of the choice of initial payment method within earnout contract, after controlling for the effects of other factors, we estimate equation (3). In particular, equation (3) is estimated in a nested regression form with various combinations of explanatory variables:

precision of the short-term abnormal returns. Hence, the use of the market adjusted return should not affect the reliability of our findings.

$$CAR_{i} = \partial + \mathop{\overset{k}{\circ}}_{j=1}^{k} \mathcal{D}_{j} X_{i,j} + \mathcal{C}_{i} \qquad i = 1...N$$
(3)

In equation (3) the dependent variable, CAR_i , is the announcement period's cumulative excess returns of the acquirer from deal i as estimated in equation (2). The intercept (α) measures the acquirers' excess return after accounting for the effects of a set of explanatory variables (X_j) discussed below. β_i is the coefficient of explanatory variable X_i .

The variables representing the use of earnout and the methods of initial payment in earnout deals are of main interest to us. The dummy variables that represent the variables of interest are: (a) 'EA' = 1 if earnout is used in the financing process of the deal and 0 otherwise; (b) 'CEA' = 1 if cash is the initial payment in an earnout financed deal and 0 otherwise; (c) 'SEA' = 1 if stocks are the initial payment in an earnout financed deal and 0 otherwise.

Draper and Paudyal (2008) show that the announcement period returns of acquirers depend on the level of information asymmetry between managers and investors. Zhang (2006) suggests that investors tend to have more information on firms with longer trading history, leading to lower information asymmetry. Therefore, to account for the possible implications of information asymmetry, the age of the acquirer (AGE), measured by the log of the number of days between the day of acquisition announcement and the date of the company's first record in Datastream, is included in equation (3). Moeller et al. (2004), among others, show that smaller acquirers gain more than larger acquirers from takeovers. Therefore, acquirers' size, measured by the log of the market value four weeks prior to the announcement of the acquisition, (MV) is included in equation (3). Stulz et al. (1990) suggest that the size of the deal may affect acquirers' gains. Therefore, the log of the deal value (DV) is included in equation (3). Extant literature (e.g. Fuller et al., 2002) shows that acquirers' gains are positively related to the relative size of the

deal. Hence, the relative size of the deal (RS), measured by the ratio of DV to acquirers' market capitalization (MV) four weeks prior to the announcement of the deal, is also included in equation (3). Earlier studies show that the acquirers' gains are also dependent on their growth opportunities. For instance, Rau and Vermaelen (1998) show that value acquirers (firms with a low market-to-book value ratio) outperform glamour acquirers (firms with a high market-to-book value ratio). Burch, Nanda, Silveri (2012) find lower post-merger returns of acquirers with higher valuation ratios. Therefore, to control for the growth opportunity of acquirers the ratio of market-to-book value of equity (MTBV) four weeks prior to the announcement of the acquisition is included in equation (3).

Although the debate on whether corporate diversification enhances or destroys shareholders' wealth is ongoing, the literature agrees that it is likely to affect a firm's value (for a review of these studies see Sudarsanam, 2010, chapter 7). If both target and acquirer belong to the same industrial sector, the integration of the two firms may be easier and the synergy gains higher. Such deals should also benefit from the experience of the acquirer's management in managing the target's line of business, and hence generate higher returns. However, firms acquiring targets that operate in an unrelated business may gain from diversification, causing a reduction in the volatility of the cash flow of the combined firm and the cost of capital. Therefore, to control for the potential effect of corporate diversification, a dummy variable (*DIV*) that is assigned the value of 1 for diversifying deals (i.e. target and acquirer do not share the same 2-digit Standard Industrial Classification (SIC) code) and 0 for focused (*FOC*) deals is included in equation (3).

The valuation risk for the acquirer increases with the level of intangible assets of the target. To account for this in equation (3) we add the difficult to value dummy, which is assigned

the value of 1 if the target is based in Media, Retail, Financial, High Technology, Healthcare, or Telecommunication sectors, and 0 otherwise. Acquisitions in countries with high political stability are expected to outperform those in countries with less political stability as the acquirers of targets in countries with high political stability will be able to estimate future cash flow and the merger outcomes more accurately. Therefore, a dummy variable representing the level of political stability is included in equation (3). The cultural shock of the transformation from owning/managing an independent company to running a subsidiary under the control of a larger firm may be quite traumatic for target owner-managers. The vendor managers may lack motivation or may try to maximize short-term profits to the detriment of the long-term interests of the acquirer. This may lead the target managers to shirking or skimping on their efforts thereby posing moral hazard to the acquirer. Earnout contracts, therefore, need to provide monitoring and incentive mechanisms to minimize moral hazard.

However, the effectiveness of such mechanisms depends on their enforceability which, in turn, depends on the legal regime governing contract failure and remedies. Thus, avoidance of adverse selection and moral hazard depends on the appropriateness of earnout for particular M&A deals and the enforceability of the earnout contract. The enforceability of the earnout contract in the target country should also be positively correlated with higher acquirer gains because the higher enforceability of the contract will ensure the success of the deal. Therefore, in equation (3) the enforceability of the contract is represented by another dummy variable. Finally, to account for the effects of the domiciles of the targets and the listing status of the targets two additional dummy variables are included. The dummy variable 'CBA' takes value of 1 if the target is not a US firm and 0 if the target is a US firm. Similarly, 'PRIV' takes the value of 1 if the target is a private firm 0 otherwise. In addition, to assess the implications of interaction

between various explanatory/control variables in shaping the gains of acquirers several interaction variables are also included in the equation.

4. The Results

This section commences with a discussion of the results of the univariate analysis, followed by a discussion of the results from various robustness checks (including the concerns of selection biases) and those of the cross-sectional regression analysis.

4.1 Univariate analysis of acquirers' gains

Table 3 presents the announcement period cumulative abnormal returns (*CAR_i*) of acquirers for the full sample, as well as for sub-samples by payment methods and the target firm's domicile (domestic or foreign). The payment methods are categorized into non-earnout financing (divided into cash only, stocks only, combo of cash and stocks, and others) and earnout (grouped by the initial payment method used in earnout financed deals i.e. cash, stocks, combination of cash & stocks, and others). Differences in the gains between the non-earnout and earnout groups (and also sub-groupings by the initial payment method), as well as between domestic and foreign deals across all methods of payment, are computed to test the hypotheses stated in Section 2. Table 3 shows that on the announcement of the deal, an average acquirer makes a significant gain of 2.40% (all deals). The estimates further show that there is no significant difference in acquirers' gains from earnout (2.39%) and non-earnout deals (2.40%). Earnout deals, however, with an initial stocks payment outperform the stocks only deals by 1.84% excess returns (all deals). This evidence supports our first hypothesis that 'Acquirers that

settle their purchase consideration with a combination of stocks and earnout gain more than the acquirers that combine cash with earnout'.

(Insert Table 3 about here)

The estimates (Table 3) also show that the influence of earnout contracts on acquirers' gains is dependent on targets' domiciles. The observed significantly higher (0.49%) gain from domestic deals, compared to that from the CBA (Table 3, domestic *vs.* CBA), is consistent with the findings of Moeller and Schlingemann (2005). The higher gains enjoyed by the acquirers of domestic targets comes solely from the non-earnout cash financed deals (1.36%). On the other hand, among the earnout deals, the CBA marginally outperforms the domestic deals by 1.28% excess return.

In the CBA, earnout deals significantly outperform the non-earnout deals (1.69% difference in gains) while the gain difference in domestic deals (-0.27%) is not statistically significant. Among the CBA deals, earnout deals outperform the non-earnout deals when earnouts are combined with stocks or with stocks & cash in the initial payment. These results suggest that the value of the choice of the method of payment, including the choice of initial payment in earnout deals, to acquirers is dependent on the domiciles of the targets too. The higher gains from earnout deals in the CBA imply a superior contribution of the earnout contract in mitigating the valuation risk to the acquirers of foreign targets. This further support to hypothesis 1 is also reinforced by the superior gains from a combination of earnout and initial payment in stocks or a combination of cash & stocks. In other words, acquirers gain more when the payment mechanism incorporates a higher degree of risk sharing with target owners in deals where the level of information is likely to be higher. Specifically, the contractual commitment of the target firm's management team to meet the specified goals in the post-merger period, along

with the low likelihood of the acquiring firm's equity being overvalued (as it is accepted by the owners/managers of privately held targets), increases the possibility of the deal's success hence leading to higher acquirers' gains. This is the first ever evidence on the effect of a combination of earnout with an appropriate initial payment method on acquirers' gains, especially when the acquirers' exposure to risk is high.

The results (Table 3) further show that the method of payment in the non-earnout group, as well as the method of the initial payment in the earnout deals significantly influence the acquirers' gains. When acquirers are exposed to significant valuation risk, they perform better when earnout is combined with stocks or a combination of cash and stocks. This follows from our earlier argument that acquirers gain the most when their valuation risk is managed through a payment mechanism that involves more than one valuation-risk sharing tool. Therefore, our second hypothesis that: 'When the initial payment is made in stocks in earnout deals, acquirers gain more from the acquisitions of foreign targets than from the acquisitions of domestic targets.' is supported.

Overall, earnout financing lessens the adverse selection risk of acquirers, as target owners are prepared to share the risk of the combined firm. A combination of earnout and stocks in initial tranche reinforces the signal to acquirers' shareholders that target owners are even more confident about the post-merger performance of the firm as their stake is even higher. This evidence reflects the supplemental effect of stocks to earnout contracts. The CBA carries higher adverse selection risks, hence earnout provision, along with the initial stock payment, contributes more in alleviating the potential effects of such risks. This is plausible because the combination of earnout and stocks substantially augments the contingent property incorporated in a stocks only payment (or earnout with cash initial payment) and together resolves the moral hazard and

adverse selection problems by incentivizing target firm's management to disclose any relevant information *ex ante* while being committed to deliver the required performance in the post-merger period.

4.2 Cross-sectional analysis of acquirers' gains

Table 4 documents the estimates of multivariate analysis (equation 3) that account for the effect of several factors which are likely to affect acquirers' announcement period returns. As reflected in the intercepts of the models (except in model 8) that after controlling for the effects of deal and firm specific factors an average acquirer earns a significant positive return, confirming that an M&A is a value enhancing venture for acquiring firms. The evidence of positive returns to acquirers is consistent with the findings of previous studies that include acquisitions of both listed and unlisted targets (see, for example, Faccio et al., 2006).

The results further show that earnout (the main variable of our interest), in conjunction with the combination of the method of initial payment, also affects the gains of acquirers. Estimates in models 1 and 2 suggest that, in general, earnout contracts generate lower gains to acquirers (possibly reflecting the dominance of domestic deals in the sample) but model 7 (CBA deals only) suggests the opposite. The superior performance of earnout deals (model 7) is also consistent with evidence available in the literature (see Kohers and Ang, 2000, and Barbopoulos and Sudarsanam, 2012). Further evidence (model 2) shows that acquirers of foreign targets enjoy significant gains from earnout deals. The analysis of gains by the initial method of payment used in earnout contracts provides a more reliable picture — acquirers that use earnout and settle the initial tranche in cash gain less (models 3 and 4) while acquirers that pay initially in stocks gain higher returns (models 6-11). These results corroborate our findings from the univariate analysis,

i.e. that the method of an initial payment in earnout is an important factor in determining the gains to acquirers and that the highest returns are earned by acquirers that combine earnout with stocks. This evidence reinforces the validity of our first hypothesis that 'Acquirers that settle their purchase consideration with a combination of stocks and earnout gain more than the acquirers that combine cash with earnout'.

The evidence further shows that the possibility of legal enforcement of the contract (i.e. earnout contract) is critically important for acquirers while selecting the domiciles of targets. Estimates (models 7 and 8) suggest that acquirers entering into earnout contracts with targets based in countries with a lower possibility of enforcing the contracts are likely to earn less, irrespective of the initial payment method. Not surprisingly, political stability in the host country is also generally positively associated with acquirers' gains (models 9-11), i.e. acquirers investing in countries with high political stability gain more.

The results (models 1-5) further show that generally acquirers' gains are affected by the listing status of the targets (acquirers of private targets gain more); the role of the domicile of targets remains neutral on acquirers' gains (models 1-5) and the case of diversifying *vs.* focused deals (all models) is similar. There is also evidence (although relatively weak) that acquirers of difficult to value targets gain more than acquirers of less difficult to value targets (models 1-5). Consistent with the evidence in the literature, as indicated by the relative size of the deal, acquirers gain more if they are involved in larger deals (all models). Similarly, acquirers that have high growth opportunity earn more than others. On the other hand, the age of acquirers seems to have an adverse impact on their gains (models 1-5) suggesting that older acquirers gain relatively less from acquisitions.

Models that control for the legal system and political stability in targets' domiciles tell a slightly different story regarding the role of some of the control factors. In such models the significance of the effects of targets' listing status, acquirers' age, acquisitions of difficult to value targets disappear – i.e. their coefficients turn statistically insignificant. Similarly, the sign of growth opportunity of acquirers turns negative (from positive), suggesting that high growth acquirers earn significantly less relative to value acquirers which is consistent with the evidence reported by Burch et al. (2012).

(Insert Table 4 about here)

Overall, the findings suggest that, to realize the superior gains from earnout contracts, combined with a stock initial payment in CBA deals, acquirers should consider the possibility of contract enforcement and political stability in the host country as well. In other words, the evidence suggests that the ability of an earnout contract to reduce the adverse selection and moral hazard problems is dependent on the initial payment method used in earnout deals as well as the legal system and political stability in targets' nations.

4.3 Addressing selection bias

It is possible that the results reported above (both univariate as well as multivariate) are affected by the presence of potential selection bias. To deal with such a concern (i.e. to reduce the vulnerability of our results to the problem of causal interpretation) we employ the Propensity Score Matching (PSM) method. PSM allows for an unbiased causal inference by pairing treated deals (earnout) with untreated (non-earnout) deals, based on a propensity score that is estimated at the deal level via a logit model using observable pre-treatment features. Following the matching exercise (see Dehejia and Wahba, 2002 for an application of the method) we compare

the cumulative excess returns of treated and untreated sample deals. We estimate the propensity scores of acquirers that have used earnout and non-earnout, as well as each type of initial payment, combined with earnout vs. the particular single up-front payment method (for example an earnout deal that has a cash initial payment is matched with a cash only deal). We select the deals from the non-earnout group based on alternative Match Ratio (MR) of 1:1, 2:1 and 3:1 within 1% APD (in the table we only report the results of MR = 1:1 to conserve space but other results, which are qualitatively similar, are available on request). To check for the accuracy of the matching process, we test whether the distributions of the covariates between the earnout and matched non-earnout groups are similar. 11 The test results (also available on request) confirm that the distributions of the logistic model covariates for all domestic, and CBA deals between earnout and non-earnout groups, while they are significantly different before the matching, are not statistically different after the matching. Therefore effective matching between the treated and untreated samples/variables is achieved. We applied the Rosenbaum-bounds sensitivity method (Rosenbaum, 2002) to assess the effect of possible omitted variable bias that may affect the propensity score estimation and thus our findings.

_

The covariates in the logit models that we estimate include the listing status of the target (dummy = 1 if the target is private), diversified deals (dummy = 1 if in the deal the acquirer and the target are based in different sectors, i.e. they do not share the same 2-digit code), cross-border deals (dummy = 1 if the acquirers and the target are based in different countries), difficult to value deals (deals = 1 if the target is based in one of the following sectors: Media, Retail, Financial, High Technology, Healthcare, and Telecommunication), log of the relative size of the deal, log of the bidding firm's age, the legal enforcement of contracts in the target country (in CBA only), the regulatory quality in the target country (in CBA only), the rule of law in the target country (in CBA only), and year and industry fixed effects.

(Insert Table 5 about here)

Table 5 reports the announcement period cumulative abnormal returns of acquirers for the treated (earnout) and untreated (non-earnout) groups of deals. Both groups of estimates (i.e. treated and untreated) also include gains by the method of initial payment. The final block of columns report the differentials of treated vs. untreated groups and sub-groupings according to the initial payment method used in earnout contracts. The estimates for the full sample show that the untreated group of deals generally earns significantly higher returns than the treated deals; and the same holds true for domestic deals. In the CBA, however, treated deals add significantly higher value to acquirers than the untreated deals, irrespective of the initial payment method. More specifically, in the CBA, significantly higher gains are earned from treated (earnout) deals in (a) full sample (mean difference of 2.20%), (b) cash and earnout vs. cash only (mean difference of 2.27%), stocks and earnout vs. stocks only (15.05%), and earnout combined with cash and stocks vs. combination of cash and stocks. These results provide clear evidence that once the effects of potential self-selection bias are addressed, the use of earnout appears even more effective in the CBA than in domestic deals. These results are also consistent with the superior performance of earnout deals in the CBA reported in Table 3 and suggest that a combination of stock and earnout is likely to mitigate adverse selection and moral hazard concerns more in CBA than domestic deals. Hence, our second hypothesis that: 'When the initial payment is made in stocks in earnout deals, acquirers gain more from the acquisitions of foreign targets than from the acquisitions of domestic targets.' receives further support.

(Insert Table 6 about here)

We control for the effects of potential self-selection bias in multivariate analysis as well.

The abnormal returns of treated groups of deals are regressed against a set of explanatory

variables identified earlier (equation 3) and Table 6 presents the results. The results show that the impact of earnout, as well as the impact of the initial payment in earnout financed deals on acquirers' gains, are consistent with the findings discussed in section 4.2 (Cross-sectional analysis of acquirers' gains). The effects of earnout financing on the gains from CBAs, the initial payment in earnout deals, the legal enforcement of contracts, and political stability, remain consistent with the results discussed in section 4.2. The results, which are robust to self-selection bias tests, suggest that acquirers gain the most from earnout deals in CBAs and the magnitude of the gain is also dependent on the choice of initial payment in earnout deals. The results further suggest that risk sharing is more beneficial in the presence of higher information asymmetry, where the need for mitigating the adverse selection and moral hazard problems is higher. Consequently, from the acquirers' perspective, earnout provision combined with stocks payment in the initial tranche seem to be the most effective form of payment in the CBA.

5. Conclusions

This paper examines the impact of the initial payment method used in earnout deals to US acquirers. This is the first study to: (a) investigate the implications of an initial payment in earnout financed deals on the gains of acquirers in domestic and foreign deals; (b) address the potential effects of self-selection bias that may reduce the reliability of initial findings by employing the PSM based on several firm-, transaction-, and country-specific characteristics; and (c) consider the impact of political stability, as well as the level of contract enforcement embedded in the legal regimes of the target firms' domicile as a safeguard against moral hazard when earnout is used. The results that are robust to model specifications as well as self-selection

bias show that acquirers of foreign targets enjoy significant gains when earnout is included in purchase considerations.

Moreover, we find that earnout deals outperform non-earnout deals when earnout is combined with stocks or with cash & stocks. The CBAs financed with such combinations outperform similarly financed domestic deals. Such evidence suggests that earnout delivers its designated risk-mitigating advances only when the contingencies of the choice of the initial payment are similar to those of earnout. Therefore, the use of earnout provides an effective mechanism for mitigating the adverse selection and moral hazard problems only when it is combined with an appropriate initial payment method that maximizes risk sharing between the merging partners.

The findings emphasize the importance of combining earnout with the appropriate initial payment, as well as considering the various characteristics encompassing the takeover bid, acquirer and target firms, political stability, and the legal enforcement in which the earnout contract will be written and enforced. Overall, our findings suggest that in deals where there are higher risks of adverse selection and moral hazard, the use of the payment method that is contingent upon post-acquisition performance of targets can add higher value to the wealth of the shareholders of acquiring firms.

References

- Barbopoulos, L., and S. Sudarsanam, 2012, Determinants of earnout as acquisition payment currency and bidders' value gains, Journal of Banking and Finance 36, 678-694.
- Brown, S., and J. Warner, 1980, Measuring security price performance, Journal of Financial Economics 8, 205-258.
- Burch, T. R., V. Nanda, and S. Silveri, 2012, Do institutions prefer high-value acquirers? An analysis of trading in stock-financed acquisitions, Journal of Financial Research 35, 211–241.
- Cain, M. D., D. J. Denis, and D. K. Denis, 2011, Earnouts: A study of financial contracting in acquisition agreements, Journal of Accounting and Economics 51, 151-170.
- Datar, S., R. Frankel, and M. Wolfson, 2001, Earnouts: The effects of adverse selection and agency costs on acquisition techniques, The Journal of Law, Economics and Organization 17, 201-238.
- Dehejia, R.H., and S. Wahba, 2002, Propensity score-matching methods for non-experimental causal studies, The Review of Economics and Statistics 84, 151-161.
- Draper, P., and K. Paudyal, 2008, Information asymmetry and acquirers' gains, Journal of Business Finance and Accounting 35, 376-405.
- Eckbo, B. E., R. M. Giammarino, and L. R. Heinkel, 1990, Asymmetric information and the medium of exchange in takeovers: Theory and tests, The Review of Financial Studies 3, 651-675.
- Faccio, M., and R. W. Masulis, 2005, The choice of payment method in European mergers and acquisitions, Journal of Finance 60, 1345-1388.

- Faccio, M., J. J. McConnell, and D. Stolin, 2006, Returns to acquirers of listed and unlisted targets, Journal of Financial and Quantitative Analysis 41, 197-220.
- Fuller, K., J. Netter, and M. Stegemoller, 2002, What do returns to acquiring firms tell us? Evidence from firms that make many acquisitions, Journal of Finance 57, 1763-1793.
- Hansen, R. S., 1987, A theory for the choice of exchange medium in mergers and acquisitions, Journal of Business 60, 75-95.
- Kohers, N., and J. Ang, 2000, Earnouts in mergers and acquisitions: Agreeing to disagree and agreeing to stay, Journal of Business 73, 445-476.
- Mantecon, T., 2009, Mitigating risks in cross-border acquisitions, Journal of Banking and Finance 33, 640-651.
- Moeller, S. B., and F. P. Schlingemann, 2005, Global Diversification and acquirer gains: A comparison between cross-border and domestic acquisitions, Journal of Banking and Finance 29, 533-564.
- Moeller, S. B., F. P. Schlingemann, and R. M. Stulz, 2004, Firm size and gains from acquisitions, Journal of Financial Economics 73, 201-228.
- Rau, R. P., and T. Vermaelen, 1998, Glamour, value and the post-acquisition performance of acquiring firms, Journal of Financial Economics 49, 223-253.
- Reuer, J., O. Shenkar, and R. Ragozzino, 2004, Mitigating risk in international mergers and acquisitions: the role of contingent payouts, Journal of International Business Studies 35, 19-32.
- Rosenbaum, P. R., 2002, Design of observational studies (Springer series in statistics).
- Stulz, R. M., A. R. Walkling, and M. H. Song, 1990, The distribution of target ownership and the division of gains in successful takeovers, Journal of Finance 45, 817-833.

- Sudarsanam, S., 2010, Creating Value from Mergers and Acquisitions: The Challenges (Pearson Education Limited, London).
- White, H., 1980, A heteroscedasticity-consistent covariance matrix estimator and a direct test for heteroscedasticity, Econometrica 48, 817-838.
- Zhang, F.X., 2006, Information uncertainty and stock returns, Journal of Finance 6, 105-135.

Table 1: Annual Distribution of Sample Deals and their Features

					N	on-earnout de	als			Е	arnout de	eals		
Year	ALL	DOM	CBA	NEA	Cash	Stocks	Combo	Other	EA	CEA	SEA	COEA	OEA	ACAR
1986	330	323	7	324	221	46	45	12	6	4	0	0	2	1.97
1987	402	391	11	392	286	50	49	7	10	3	1	4	2	1.61
1988	440	426	14	432	309	51	64	8	8	2	1	2	3	2.30
1989	647	615	32	620	447	81	77	15	27	11	2	4	10	1.37
1990	718	692	26	697	544	73	68	12	21	11	3	2	5	2.12
1991	510	457	53	471	258	94	99	20	39	12	9	7	11	3.28
1992	800	732	68	763	424	147	176	16	37	15	7	4	11	3.05
1993	947	890	57	874	475	192	189	18	73	21	10	16	26	2.88
1994	1,303	1,211	92	1,242	720	235	272	15	61	21	13	16	11	2.76
1995	1,488	1,364	124	1,426	801	314	293	18	62	21	10	12	19	2.26
1996	1,814	1,689	125	1,749	947	420	367	15	65	26	8	10	21	2.52
1997	2,103	1,941	162	2,004	1,056	416	512	20	99	33	10	18	38	2.16
1998	2,652	2,411	241	2,530	1,584	406	517	23	122	49	12	31	30	2.51
1999	2,172	1,985	187	2,090	1,230	476	366	18	82	26	16	18	22	3.24
2000	1,865	1,675	190	1,762	834	552	352	24	103	32	25	20	26	2.34
2001	1,218	1,088	130	1,132	633	249	238	12	86	28	19	23	16	3.53
2002	1,040	907	133	949	590	131	217	11	91	39	17	16	19	3.15
2003	945	849	96	855	560	113	178	4	90	46	10	19	15	3.16
2004	1,139	989	150	1,037	718	97	214	8	102	45	7	22	28	1.49
2005	1,212	1,059	153	1,118	812	85	211	10	94	46	2	22	24	1.85
2006	1,110	977	133	1,012	774	54	176	8	98	55	8	20	15	1.65
2007	1,196	1,068	128	1,094	887	56	147	4	102	67	6	14	15	1.94
2008	1,084	983	101	1,022	881	37	97	7	62	43	4	10	5	2.27
2009	566	482	84	504	398	37	64	5	62	31	5	13	13	2.99
2010	724	624	100	657	554	29	69	5	67	45	3	7	12	1.62
2011	855	755	100	790	671	30	87	2	65	41	7	6	11	1.22
2012	719	604	115	655	558	16	81	0	64	39	1	9	15	2.17
2013	554	478	76	510	430	21	58	1	44	30	3	5	6	1.72
Total	30,553	27,665	2,888	28,711	18,602	4,508	5,283	318	1,842	842	219	350	431	-
% of All	-	90.5	9.5	94.0	60.9	14.8	17.3	1.0	6.0	2.8	0.7	1.1	1.4	-

Notes: The table presents the annual distribution of US M&A activity from 01/01/1986 to 31/12/2013. ALL refers to the total of sample deals; DOM refers to domestic deals; CBA refers to cross-border deals; NEA refers to non-earnout deals (i.e. the deals that are financed with single up-front payments); Cash refers to deals that are financed with cash only; Stocks refers to deals that are financed with a combination of cash and stocks; Other refers to deals that are financed with a combination of various securities/cash, excluding earnout; EA refers to earnout financed deals; CEA refers to cash and earnout financed deals; SEA refers to stock and earnout financed deals; OEA refers to deals that are financed with earnout and mixed methods of payment. Finally, ACAR refers to the acquirers' announcement period cumulative abnormal return. The definitions of the variables can be found in Appendix A.

Figure 1

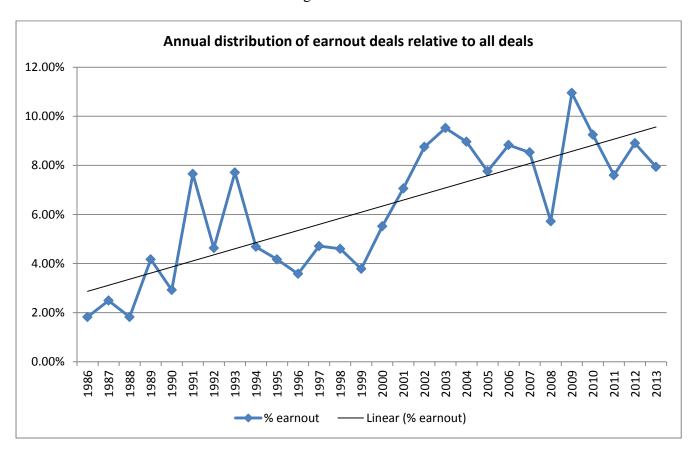


Table 2: Summary Statistics

Panel A

				Non-earnout (NEA) deals					Earn	out (EA)	deals		Domicile		Diversity	
		All Deals	NEA	Cash	Stocks	Combo	Other	EA	CEA	SEA	COEA	OEA	DOM	CBA	FOC	DIV
	Mean MV	5,686	5,846	6,862	5,470	2,744	3,282	3,198	4,837	2,045	829	2,507	5,254	9,833	5,110	7,220
ALL	Mean DV	338	353	282	406	559	307	102	120	80	75	99	350	225	367	260
	N	30,553	28,711	18,602	4,508	5,283	318	1,842	842	219	350	431	27,665	2,888	22,208	8,345
	Mean MV	3,791	3,976	6,209	4,595	1,192	655	2,649	3,958	2,296	819	2,021	3,459	5,897	2,760	5,089
PRIV	Mean DV	77	75	85	63	79	27	86	99	85	60	86	76	82	86	65
I KI V	N	9,843	8470	2,950	2,600	2,798	122	1,373	596	178	284	315	8,502	1,341	5,487	4,356
	% of All	32.22	29.50	15.86	57.68	52.96	38.36	74.54	70.78	81.28	81.14	73.09	30.73	46.43	24.71	52.20
	Mean MV	7,063	7,060	6,955	8,225	6,986	5,230	7,802	20,617	1,698	2,749	1,534	6,663	17,566	6,098	14,856
PUB	Mean DV	543	544	348	1,142	2,047	460	207	183	109	463	111	543	555	500	889
гов	N	15,474	15,426	12,796	1,400	1,120	110	48	15	15	10	8	14,907	567	13,770	1,704
	% of All	50.65	53.73	68.79	31.06	21.20	34.59	2.61	1.78	6.85	2.86	1.86	53.88	19.63	62.00	20.42
	Mean MV	5,183	5,246	7,120	2,361	2,446	4,516	4,465	6,078	528	537	3,997	3,902	10,746	4,870	5,587
SUB	Mean DV	222	229	193	134	323	510	141	170	30	82	138	221	228	268	164
зов	N	5,236	4,815	2,856	508	1,365	86	421	231	26	56	108	4,256	980	2,951	2,285
	% of All	17.14	16.77	15.35	11.27	25.84	27.04	22.86	27.43	11.87	16.00	25.06	15.38	33.93	13.29	27.38

Panel B

		MV	DV	RS	EA V	⁷ alue	RE	AV	MTI	BV	Age (in years)	
	N	Mean	Mean	Mean	N	Mean	N	Mean	N	Mean	N	Mean
All	30,553	5,686	338	55	1,685	29	1,685	34	27,557	3.3	30,542	12.9
DOM	27,665	5,254	350	56	1,399	28	1,399	34	24,929	3.4	27,654	12.7
CBA	2,888	9,833	225	46	286	34	286	33	2,628	2.0	2,888	14.3
FOC	22,208	5,110	367	36	983	38	983	34	20,261	4.5	22,200	13.1
DIV	8,345	7,220	260	105	702	17	702	33	7,296	0.0	8,342	12.3
NEA	28,711	5,846	353	57	-	-	-	-	25,926	3.4	28,700	13.0
Cash	18,602	6,862	282	33	-	-	-	-	17,360	2.9	18,596	15.0
Stocks	4,508	5,470	406	70	-	-	-	-	3,803	6.8	4,505	7.9
Combo	5,283	2,744	559	130	-	-	-	-	4,527	2.3	5,281	10.1
Other	318	3,282	307	74	-	-	-	-	236	3.9	318	10.4
EA	1,842	3,198	102	26	1,685	29	1,685	34	1,631	1.9	1,842	11.4
CEA	842	4,837	120	18	805	33	805	32	777	2.6	842	14.1
SEA	219	2,045	80	50	209	23	209	40	168	-6.3	219	8.0
COEA	350	829	75	30	273	19	273	30	311	2.8	350	8.7
OEA	431	2,507	99	26	398	33	398	37	375	3.1	431	10.1
PRIV	9,843	3,791	77	38	1,251	29	1,251	34	8,562	5.0	9,839	9.7
PUB	15,474	7,063	543	65	44	51	44	31	14,314	3.1	15,468	14.8
SUB	5,236	5,183	222	56	390	28	390	33	4,681	0.8	5,235	12.9

Notes: The sample is comprised of acquisitions announced by US firms between 01/01/1986 and 31/12/2013 that meet the criteria summarized in the text. ALL refers to the full sample deals; DOM refers to domestic deals; CBA refers to cross-border deals; NEA refers to non-earnout deals (i.e. the deals that are financed with single up-front payments); Cash refers to deals that are financed with cash only; Stocks refers to deals that are financed with stocks only; Combo refers to deals financed with a combination of cash and stocks; Other refers to deals that are financed with a combination of various securities/cash, excluding earnout; EA refers to earnout financed deals; CEA refers to cash and earnout financed deals; SEA refers to stocks and earnout financed deals; COEA refers to combo (cash and stocks) and earnout financed deals; OEA refers to deals that are financed with earnout and mixed methods of payment; FOC refers to focused deals in which acquirer and target operate in the same industry, i.e. they share the same two-digit SIC code; DIV refers to deals in which the target is a private firm; PUB refers to deals in which the target is a public firm; SUB refers to deals in which the target is a subsidiary firm; MV refers to acquirers' market value measured by the company's market capitalization 20 days prior to the M&A announcement; DV refers to the deal value; RS refers to the relative deal size of the deal (i.e. deal value/acquirer's market value); EA Value refers to the earnout value; REAV refers to the earnout value/deal value; MTBV refers to the ratio of acquirer's market value to the book value at the end of the last quarter prior to the announcement of the deal; Age refers to the number of years between the acquirer's first recorded day on Datastream and the deal announcement day; N represents the number of deals in each category. Deal value [DV], market value [MV], and earnout value [Earn-value] are in \$ millions. The definitions of variables can be found in Appendix A.

Table 3: Acquirers' announcement period returns: Univariate analysis

		Non-Earnout (NEA) deals						Ear	nout (EA) o	leals		EA	CEA	SEA	COEA	OEA
												VS.	vs.	VS.	VS.	VS.
	ALL Deals	NEA	Cash	Stocks	Combo	Other	EA	CEA	SEA	COEA	OEA	NEA	Cash	Stocks	Combo	Other
	0	0	0	0	0			ll deals						0		h
Mean	2.40^{a}	2.40^{a}	2.22^{a}	2.65^{a}	2.75^{a}	3.46^{a}	2.39 ^a	1.77 ^a	4.49 ^a	3.46^{a}	1.68 ^a	-0.01	-0.45	1.84 ^c	0.71	-1.78 ^b
Median	1.16^{a}	1.19^{a}	1.29^{a}	0.45^{a}	1.23^{a}	1.17^{a}	0.89^{a}	0.62^{a}	1.74 ^b	1.67^{a}	0.74^{c}	-0.29	-0.67 ^b	$1.28^{\rm b}$	0.43	-0.44
N	30,553	28,711	18,602	4,508	5,283	318	1,842	842	219	350	431					
							Domestic	c deals (I	OM)							
Mean	2.44 ^a	2.46^{a}	2.33 ^a	2.68 ^a	2.70^{a}	3.33 ^a	2.19 ^a	1.79 ^a	3.15 ^a	3.00^{a}	1.75 ^a	-0.27	-0.54	0.47	0.30	-1.59 ^c
Median	1.22 ^a	1.24^{a}	1.36 ^a	0.51^{a}	1.16^{a}	1.17^{a}	0.81^{a}	0.62^{a}	0.91	1.48^{a}	0.56	-0.44 ^c	-0.75 ^b	0.41	0.31	-0.61
N	27,665	26,123	17,119	4,060	4,663	281	1,542	686	193	304	359					
							Cross-bor									
Mean	1.95 ^a	1.78^{a}	0.96^{a}	2.37^{a}	3.14^{a}	4.41	3.46^{a}	$1.70^{\rm b}$	14.45 ^a	6.51 ^a	1.37	1.69 ^b	0.74	12.07^{a}	3.37^{c}	-3.04
Median	0.78^{a}	0.72^{a}	0.62^{a}	-0.23	1.67^{a}	1.58	1.21 ^a	0.58	7.88^{a}	2.91	1.37	0.49^{c}	-0.04	8.11 ^a	1.25	-0.21
N	2,888	2,588	1,483	448	620	37	300	156	26	46	72					
	Domestic vs. CBA															
Mean	0.49 ^b	0.68 ^a	1.36 ^a	0.31	-0.44	-1.08	-1.28 ^c	0.09	-11.30 ^a	-3.52°	0.37	-				
Median	0.49 0.44^{a}	0.68 0.52^{a}	0.74^{a}	0.31	-0.44 -0.50	-0.41		0.09	-11.30 -6.97 ^a							
Median	0.44	0.32	0.74	0.75	-0.30	-0.41	-0.40	0.04	-0.97	-1.44	-0.81	-				

Notes: Announcement period, 5-days [-2, +2], abnormal returns (in %) of all deals, grouped by the target firm's domicile, by methods of payment (earnout and initial payment in such deals and non-earnout with payment methods), and difference in gains from domestic and CBA deals are presented. *ALL* refers to the total of sample deals; *DOM* refers to domestic deals; *CBA* refers to cross-border deals; *NEA* refers to non-earnout deals (i.e. the deals that are financed with single up-front payments); *Cash* refers to deals that are financed with a combination of cash and stocks; *Other* refers to deals that are financed with a combination of various securities/cash, excluding earnout; *EA* refers to earnout financed deals; *CEA* refers to cash and earnout financed deals; *SEA* refers to stocks and earnout financed deals; *OEA* refers to deals that are financed with earnout and mixed methods of payment; *N* refers to the number of observations in each portfolio and Appendix A provides the definitions of the variables. a, b, and c indicate significance at 1%, 5% and 10% respectively.

Table 4: The determinants of acquirers' gains: Multivariate analysis

Models	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
Intercept	0.070^{a}	0.070^{a}	0.070^{a}	0.069 ^a	0.070^{a}	0.100^{b}	0.047 ^c	0.043	0.047 ^c	0.050^{c}	0.051 ^b
Earnout (EA)	-0.007 ^a	-0.011 ^a					0.018 ^c			0.004	
REAV					0.003^{c}						
CEA			-0.010^{a}	-0.011^{a}		-0.009		-0.003	0.007		-0.001
SEA			0.011	-0.005		0.136^{b}		0.180^{b}	0.186^{b}		0.093^{a}
Private target (PRIV)	0.008^{a}	0.008^{a}	0.007^{a}	0.007^{a}	0.007^{a}	0.008	0.008	0.008	0.005	0.006	0.006
Foreign (CBA)	-0.001	-0.003	-0.001	-0.003	-0.001						
Diversified (DIV)	-0.002	-0.002	-0.002	-0.002	-0.002	0.009^{c}	0.008	0.008	0.004	0.004	0.004
Diff. to Val. (DIFFVL)	0.002^{c}	0.002^{c}	0.002^{c}	0.002^{c}	0.002^{c}	0.003	0.003	0.003	0.005	0.004	0.003
Log Relative Size (RS)	0.010^{a}	0.010^{a}	0.010^{a}	0.010^{a}	0.010^{a}	0.011^{a}	0.011^{a}	0.011 ^a	0.007^{a}	0.009^{a}	0.009^{a}
Log Acquirer Age (Age)	-0.003^{a}	-0.003^{a}	-0.003^{a}	-0.003^{a}	-0.003^{a}	-0.001	-0.001	-0.001	-0.002	-0.001	-0.001
Acquirer MTBV	0.001^{a}	0.001^{a}	0.001^{a}	0.001^{a}	0.001^{a}	-0.001 ^c	-0.001^{c}	-0.001^{c}	-0.001 ^c	-0.001^{c}	-0.001°
$EA \times CBA$		0.022^{a}									_
$Cash\ EA \times CBA$				0.007							
Stocks $EA \times CBA$				0.143^{a}							
Legal enforcement (LS)						-0.026					
Low LS							0.011 ^c	0.010 ^c			
$EA \times Low LS$							-0.031 ^c				
$CEA \times Low LS$								-0.022			
$SEA \times Low LS$								-0.148 ^a			
Pol. Stability (PS)									0.009 ^a		
High PS										0.002	0.004
EA × High PS										0.045^{a}	0.00
CEA × High PS										0.015	-0.002
SEA × High PS											0.144^{b}
F-Stat	90.00 ^a	80.96 ^a	80.11 ^a	68.38 ^a	89.48 ^a	14.56 ^a	12.33 ^a	12.37 ^a	14.75 ^a	13.40 ^a	13.25 ^a
R-squared	2.55	2.58	2.55	2.66	2.53	7.43	6.37	7.70	7.76	6.38	7.62
N-squared	27,548	27,548	27,548	27,548	2.53	1,642	1,642	1,642	1,589	1,589	1,589
	41,540	41,540	41,540	41,540	41,540	1,042	1,042	1,044	1,507	1,507	1,307

Notes: Announcement period 5-days [-2, +2], market-adjusted abnormal returns of acquirers are regressed on a set of explanatory variables. Equation (3) (see text) is estimated using the ordinary least squares method. The intercept (α) measures acquirers' abnormal returns after accounting for the effects of explanatory variables. *EA* refers to earnout deals; *REAV* refers to the earnout value/deal value ratio; *CEA* refers to cash and earnout financed deals and *SEA* refers to stocks and earnout financed deals; *PRIV* refers private target acquisition deal; *CBA* refers to cross-border deals; *DIV* refers to diversifying deals in which the acquirer

and target operate in different industries; *DIFFVL* refers to deals in which the acquirer and target are based in one of the difficult to value sectors: Media, Retail, Financial, High Technology, Healthcare, or Telecommunications; *RS* refers to the relative size of the deal (i.e. deal value/acquirer's market value); *Age* refers to the number of years between the acquirer's first recorded day on Datastream and the deal announcement day; *MTBV* refers to the ratio of the acquirer's market value to the book value at the end of the last quarter prior to the announcement of the deal; *LS* refers to the legal enforcement of contracts in the target firm's domicile; and *PS* refers the level of political stability in the target firm's country. In the regression equation, Age, MV, DV, and RS are in logarithmic form. The definitions of the variables can be found in Appendix A. Standard errors are corrected for heteroscedasticity by using White's (1980) method. a, b, and c indicate significance at 1%, 5% and 10% respectively.

Table 5: Acquirers' gains: Univariate analysis (selection bias addressed)

		Treate	ed (Earnout	deals)			Con	trol (Non-	earnout deals)				Treated vs.	. Control	
											EA	CEA	SEA	COEA	OEA
	EA	CEA	SEA	COEA	OEA	NEA	Cash	Stocks	Cash & Stocks	Other	VS.	VS.	VS.	vs.	vs.
											NEA	Cash	Stocks	Cash & Stocks	Other
								All	deals						
Mean	2.39^{a}	1.77^{a}	4.49^{a}	3.46^{a}	1.68 ^a	3.42^{a}	2.48^{a}	7.59^{a}	2.88^{a}	4.19^{a}	-1.03 ^b	-0.71°	-3.10^{c}	0.58	-2.51 ^a
Median	0.89^{a}	0.62^{a}	1.74 ^b	1.67 ^a	0.74^{c}	1.31 ^a	1.21 ^a	1.59 ^b	0.67^{c}	1.56 ^a	-0.42 ^b	-0.59 ^b	0.15	1.00^{c}	-0.82^{b}
N	1,842	842	219	350	431	1,842	840	209	345	230					
								Domestic (deals (DOM)						
Mean	2.19^{a}	1.79^{a}	3.15^{a}	3.00^{a}	1.75^{a}	3.33^{a}	3.16^{a}	6.26^{a}	2.87^{a}	3.65^{a}	-1.14 ^b	-1.37 ^a	-3.11 ^c	0.13	-1.90°
Median	0.81^{a}	0.62^{a}	0.91	1.48^{a}	0.56	1.05	1.64 ^a	3.38	0.73°	1.55 ^a	-0.24	-1.02^{a}	-2.47 ^b	0.75	-0.99^{c}
N	1,542	686	193	304	359	1,525	685	193	294	197					
							C	ross-borde	er deals (CBA)						
Mean	3.46^{a}	1.69 ^b	14.45 ^a	6.51 ^a	1.37	1.26 ^c	-0.59	-0.60	1.89	6.19	2.20^{b}	$2.27^{\rm b}$	15.05 ^a	4.62°	-4.82
Median	1.21 ^a	0.37	7.88^{a}	2.91	1.37	0.57	-0.27	-1.53	0.98	-0.29	0.64^{c}	0.64 ^c	9.41 ^a	1.93	1.66
N	300	115	26	46	72	293	113	14	33	20					

Notes: Announcement period, 5-day [-2, +2], abnormal returns (in %) of treated (earnout and sub-groupings according to the initial payment in earnout deals) and control (non-earnout and sub-groups in cash, stocks combo and other) deals, for all deals, as well as by domiciles of targets, are presented. Differences in the gains of the treated (earnout) and the control (non-earnout) groups, for each category of sub-samples, are also presented. The control group is identified using the PSM method based on 1:1 matching ratio and 0.01 caliper (a caliper is the maximum tolerated difference between matched subjects - treated and control objects). *ALL* deals refers to the full sample; *DOM* refers to domestic deals; *CBA* refers to cross-border deals; *EA* refers to earnout financed deals; *CEA* refers to cash and earnout financed deals; *SEA* refers to stocks and earnout financed deals; *CEA* refers to combo (cash and stocks) and earnout financed deals; *OEA* refers to deals that are financed with earnout and mixed methods of payment; *NEA* refers to non-earnout deals (i.e. the deals that are financed with single up-front payments); *Cash* refers to deals that are financed with cash only; *Stocks* refers to deals that re financed with stocks only; *Cash* & *Stocks* refers to deals financed with a combination of cash and stocks; *Other* refers to deals that are financed with a combination of various securities other than cash& stocks, excluding earnout; *N* refers to the number of observations in each deal portfolio. Appendix A provides the definitions of the variables. a, b, and c indicate significance at 1%, 5% and 10% respectively.

Table 6: The determinants of acquirers' gains: Multivariate analysis (selection bias addressed)

										~~ .	
Sample:	All	All	All	All	All	CBA	CBA	CBA	CBA	CBA	CBA
Model:	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
Intercept	0.068 ^a	0.069 ^a	0.066^{a}	0.066 ^a	0.068^{a}	0.082	0.040	0.032	0.051 ^c	$0.075^{\rm b}$	$0.073^{\rm b}$
Earnout (EA)	-0.010 ^a	-0.014 ^a			L		0.021 ^b			0.003	
REAV					0.004^{b}						
CEA			-0.010^{a}	-0.012^{a}		-0.005		0.003	0.009		0.004
SEA			0.008	-0.009		0.142^{b}		0.187^{b}	0.203 ^a		0.128^{a}
Private target (PRIV)	0.008^{a}	0.008 ^a	0.008^{a}	0.007 ^a	0.008^{a}	-0.001	0.001	-0.001	0.004	0.002	-0.001
Foreign (CBA)	-0.002	-0.008^{b}	-0.002	-0.006^{c}	-0.002						
Diversified (DIV)	0.001	0.002	0.001	0.002	0.001	-0.002	-0.005	-0.004	-0.006	-0.006	-0.007
Diff. to Val. (DIFFVL)	0.005^{c}	0.005°	0.005°	0.004 ^c	0.005°	0.002	0.004	0.001	-0.002	0.001	-0.002
Log Relative Size (RS)	0.015^{a}	0.014^{a}	0.014^{a}	0.014^{a}	0.015^{a}	0.010^{a}	0.010^{a}	0.009^{a}	0.005^{b}	0.008^{a}	0.007^{a}
Log Acquirer Age (Age)	-0.001	-0.001	-0.001	-0.001	-0.001	0.001	0.001	0.001	-0.003	-0.005	-0.004
Acquirer MTBV	-0.001	-0.001	-0.001	-0.001	-0.001	0.001	0.001	0.001	0.001	-0.001	-0.001
$EA \times CBA$		0.027^{a}									
$Cash EA \times CBA$				0.012							
Stocks $EA \times CBA$				0.161^{a}							
Legal enforcement (LS)						-0.023					
Low LS							0.009	0.006			
$EA \times Low LS$							-0.033^{c}				
$CEA \times Low LS$								-0.026			
$SEA \times Low LS$								-0.148^{b}			
Pol. Stability (PS)									0.010 ^c		
High PS										-0.003	0.004
EA × High PS										0.048^{a}	
CEA × High PS											-0.006
SEA × High PS											0.117^{c}
F-Stat	37.14 ^a	33.95 ^a	32.70 ^a	29.41 ^a	36.53 ^a	5.61 ^a	2.94 ^a	5.21 ^a	7.11 ^a	4.08 ^a	6.39 ^a
R-squared	3.76	3.87	3.73	4.09	3.71	6.72	3.64	7.57	8.63	4.62	8.52
N Squared	7,606	7,606	7,606	7,606	7,606	711	711	711	687	767	767
	7,000	7,000	7,000	7,000	7,000	/ 1 1	/ 1 1	/ 1 1	007	707	707

Notes: Announcement period 5-days [-2, +2], market-adjusted abnormal returns of the matched sample of acquirers are regressed against a set of explanatory variables. The matched sample includes treated deals and control deals. The PSM method is used to construct the matched sample based on 5:1 matching ratio and 0.01 caliper (for each treated deal the PSM matches 5 control deals). A caliper is the maximum tolerated difference between matched subjects (treated and control objects). Equation (3) (see text)

is estimated using OLS. The intercept (a) measures acquirers' abnormal returns after accounting for the effects of explanatory variables. *EA* refers to earnout deals; *REAV* refers to the earnout value/deal value ratio; *CEA* refers to cash and earnout financed deals and *SEA* refers to stocks and earnout financed deals. *PRIV* refers to private target acquisition deals; *CBA* refers to cross-border deals; *DIV* refers to diversifying deals in which the acquirer and target operate in different industries; *DIFFVL* refers to deals in which the acquirer and target are based in one of the difficult to value sectors: Media, Retail, Financial, High Technology, Healthcare, or Telecommunications; *RS* refers to the relative size of the deal (i.e. deal value/acquirer's market value); *Age* refers to the number of years between the acquirer's first recorded day on Datastream and the deal announcement day; *MTBV* refers to the ratio of acquirer's market value to the book value at the end of the last quarter prior to the announcement of the deal; *LS* refers to the legal enforcement of contracts in the target firm's domicile; and *PS* refers the level of political stability in the target firm's country. In the regression equation Age, MV, DV, and RS are in logarithmic form. The definition of the variables can be found in Appendix A. Standard errors are corrected for heteroscedasticity by using White's (1980) method. a, b, and c indicate significance at 1%, 5% and 10% respectively.

Appendix A: The variables

The variables used in the paper and their data sources are summarized. SDC is Thomson-Reuters' SDC database. Industries are grouped following SDC classification. Variables Age, RS, MV, and DV are log transformed in both logistic and OLS regressions.

Variables	Description	Data Source
ACAR	Acquiring firm's announcement period cumulative abnormal return. Estimated using equations (1) and (2).	Datastream
AGE	Acquirer's age, measured between day the acquirer is first recorded on Datastream and acquisition announcement day.	Datastream/SDC
DV	Acquisition transactions value (in million US dollars).	SDC
EA value	Value of earnout in earnout deals (in million US dollars).	SDC
REAV	The ratio of earnout value (EA) to deal value (DV) in earnout deals.	SDC
RS	Relative deal size, i.e. ratio of DV to MV of acquirer four weeks before the announcement of deal.	Datastream + SDC
MV	Acquirer's market value four weeks prior to the announcement of deal (in million US dollars).	Datastream
MTBV	Market-to-Book Value ratio of acquirer. MV is four weeks before the announcement while book value of equity is from the most recent accounting statement prior to acquisition announcement.	Datastream
LS	The legal enforcement of contracts in the target's country. Since the information on legal enforcement of contracts is available only annually, M&A deals announced before (after) June are matched with the legal enforcement of contracts of the previous (same) year.	www.freetheworld. com Fraser Institute
PS	Political Stability. It measures perceptions of the likelihood of political instability and/or politically motivated violence, including terrorism.	Worldwide Governance Indicators
Cash	Cash only deals.	SDC
CBA	Cross-border deals.	SDC
CEA	Earnout deals with cash initial payment. Assigned the value of 1 if cash is the initial payment in earnout deals and $= 0$ in the remaining cases.	SDC
Cash & Stocks	Combination of cash and shares only. Dummy: Cash & Stocks = 1, 0 otherwise.	SDC
COEA	Combo Initial Payment in earnout deals. Combo initial payment is earnout deals = 1 and 0 otherwise.	SDC
DIV	Diversifying deals. Dummy = 1 when acquirer and target do not share the same SIC code (2-digit) and = 0 when they share (= FOC).	SDC
EA	Earnout deals. Assigned the value of 1 when purchase consideration includes Earnout, and = 0 otherwise (= NEA).	SDC
DIFFVL	Difficult to Value Sectors. Dummy variable takes the value of 1 if the target firm operates in Media, Retail, Financial, High Technology, Healthcare, or Telecommunications sectors, and = 0 otherwise.	SDC
OTHER	Dummy takes the value of 1 if consideration is paid using other than cash only, stock only, or cash plus stocks in non-earnout deals.	SDC
OEA	Other Initial Payment in earnout deals.	SDC
PRIV	Deals in which targets are private. Dummy variable takes the value of 1 if the target is private and $= 0$ otherwise.	SDC
PUB	Deals in which targets are public. Dummy variable takes the value of 1 if the target is public and $= 0$ otherwise.	SDC
SEA	Initial stocks payment in earnout deals. The dummy variable takes the value of 1 if stocks is the initial payment and = 0 otherwise.	SDC
Stocks	Deals that are settled in stocks only. Dummy variable takes the value of 1 when 100% of deal consideration is paid in stocks.	SDC
SUB	Deals involving acquisitions of subsidiaries.	SDC